Legendre spectral projection methods for Urysohn integral equations
نویسندگان
چکیده
منابع مشابه
Legendre spectral projection methods for Urysohn integral equations
In this paper, we consider the Legendre spectral Galerkin and Legendre spectral collocation methods to approximate the solution of Urysohn integral equation. We prove that the approximated solutions of the Legendre Galerkin and Legendre collocation methods converge to the exact solution with the same orders, O(n−r) in L2-norm and O(n 1 2 −r) in infinity norm, and the iterated Legendre Galerkin ...
متن کاملA Legendre-spectral scheme for solution of nonlinear system of Volterra-Fredholm integral equations
This paper gives an ecient numerical method for solving the nonlinear systemof Volterra-Fredholm integral equations. A Legendre-spectral method based onthe Legendre integration Gauss points and Lagrange interpolation is proposedto convert the nonlinear integral equations to a nonlinear system of equationswhere the solution leads to the values of unknown functions at collocationpoints.
متن کاملa legendre-spectral scheme for solution of nonlinear system of volterra-fredholm integral equations
this paper gives an ecient numerical method for solving the nonlinear systemof volterra-fredholm integral equations. a legendre-spectral method based onthe legendre integration gauss points and lagrange interpolation is proposedto convert the nonlinear integral equations to a nonlinear system of equationswhere the solution leads to the values of unknown functions at collocationpoints.
متن کاملA Projection Method for Solving Nonlinear Volterra-Fredholm Integral Equations using Legendre Hybrid Functions
Since various problems in science and engineering fields can be modeled by nonlinear Volterra-Fredholm integral equations, the main focus of this study is to present an effective numerical method for solving them. This method is based on the hybrid functions of Legendre polynomials and block-pulse functions. By using this approach, a nonlinear Volterra-Fredholm integral equation reduces to a no...
متن کاملNumerical solution of nonlinear integral equations by Galerkin methods with hybrid Legendre and Block-Pulse functions
In this paper, we use a combination of Legendre and Block-Pulse functionson the interval [0; 1] to solve the nonlinear integral equation of the second kind.The nonlinear part of the integral equation is approximated by Hybrid Legen-dre Block-Pulse functions, and the nonlinear integral equation is reduced to asystem of nonlinear equations. We give some numerical examples. To showapplicability of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2014
ISSN: 0377-0427
DOI: 10.1016/j.cam.2013.12.002